MATHEMATICAL MODELS OF STRESS RELAXATION
AND THE DEFORMATION OF SOLIDS WITH A
DISCRETE STRUCTURE

V. V. Bulatov UDC 532.135

Mechanical models and equations of state of solids with a discrete structure such as con-
cretes, cement stones, rocks, etc., are discussed. Models are proposed describing the
relaxation and deformation of the solids mentioned.

The mechanical models presented in the literature do not describe the behavior of solids with a dis-
crete structure such as concretes, rocks, ete. ([1] and others). An analysis of the strain and creep
curves of the materials mentioned indicates that a model should possess a number of the following proper-
ties.

1. An instantaneously applied load produces a corresponding deformation.

2. Under constant stress the strain increases with time, asymptotically approaching a limit which
depends on the stress.

3. The limiting strain depends nonlineérly on the stress.

4. Up to a certain value of the stress (the elastic limit) the deformation of the body is elastic.
Plastic~viscous strain begins beyond the elastic limit.

5. The increase in viscoplastic strain is accompanied by a simultaneous increase in elastic strain
(Figs. 1 and 2).

Models have been developed which satisfy one or more of the conditions listed, but they do not satisfy
all of them. Therefore, we propose a model of a body corresponding to the five requirements indicated.
Its structural formula is

3 =Pr —K. 1)

Condition 1 is satisfied by the presence of an H element; the yield point and the appearance of plas-
tic properties of the body are simulated by including a St.-V element (condition 4). Conditions 2, 3, and
5 are satisfied by including a K unit, Viscous properties are simulated by an N element and the asymp-
totic character of the € vs t curves is achieved by a parallel content of H, and N elements. Condition 5 is
satisfied by an appropriate disposition of H; and H, elements in the model proposed.

The equation of state of a Pr— K body is written in the form
o (t) = Ee, + [Ee, () + ey () (0 — 0],
o, = E;er = A = const, 2)
filc —og) is the Heaviside unit function, '

0<0, o()=Ee),

. . 3)
0> 0, o()=Eger+ Eg () + 15 (0) = A+ Ege, () -+ 8, ).
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Fig. 1. Time development of strain for a constant load which is

later removed.

Fig. 2. Time variation of stress for constant strain,

For o) = 7y = const we have

E2

i) Brey= =4 _p {4)
1

The solution of (4) for an initial strain ¢l =, = €, has the form

s:ﬂ+(ao—£&) exp (——EZ), (5)
E, E, LI
i,e., for © = const the strain varies exponentially.

Thus, condition 2 is satisfied.

A fault of the proposed model is that it does not relax. A Pr— K medium best describes the creep
process of rocks but is not suitable for the study of stress relaxation.

A medium which permits the study of relaxation and satisfies most of the requirements analyzed
above is 2 P— Th body obeying a nonlinear relation between the limiting stress and strain [2]:

e = Do -- Fo?, (6)
Then the equation of state in the one-dimensional case can be written in the form
. . 2
g:_l_o'_;_L a_(l_,.‘_ﬁ(i —g, (7)
E t, E E
. . 2
E*___I_S:_I_O'_’A__I_. a_g__{_.ﬁ i) . (8)
A E £ E E
Setting o = const, we solve the homogeneous equation corresponding to (8).

Setting ely = = €, we obtain

1 i’ o
t, 1 E

) , (9)

Il

s:Cexp(—{——) =B+ (g, — B)exp (—-—t—>

0 tO

et o) o -

(S

tO
Condition (2) is satisfied.
For £ = const we have
1 - @ B g
— - — 0 L —F_ gt = 10
E LE | 4E? 2 a0
Introducing the notation a/ty =b, B/t,E = a, and ¢E/t; = ¢, we write
: 0+ a0 +bo = c; {11)
: ~ /) E )2 o*E -
e ; g (12
o (Vacr—'— 1/ i c-- 0 )
Setting w?E/4t,3 =d and ¢ +d =g, we obtain
s+WVao+VdP=q (13)
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Introducing the notation

— — dz — do . 2z
aoc+Vd =z — = = = L (14)
4 4 &V Ty
and substituting into (13), we obtain
z+Va2=Vaqg="~ (15)
Equation (15) is a Riccati equation whose solution [3] for vak > 0 has the form
. zaVEk +EkthaVE ¢ (16)

avk +azgthaVkt'
The curve passes through the point (0, zy); according to (14) we have

zaVk +kthaVE ¢ ]/d
o= - - = (17)
aVak+ azythaV'ki a

Here
- T
2y = Va Uo‘*“‘/ o

Equation (17) describes the relaxation of a solid.

The properties of solids depend to a considerable degree on such physical conditions as the differ-
ence between external and pore pressures and temperatures and the characteristics of liquid and gaseous
media. It is a serious fault of the known equations of state that they do not contain these factors.

Further improvement of mechanical models of solids must obviously take account of the factors
mentioned. The proposed models can be applied to construct generalized models of the stability and rup-
ture of rocks and soils in the production of various mining engineering and construction operations,

NOTATION
Pr is the Prandt] medium;
K is the Kelvin— Voigt medium;
H is the Hooke medium;
N is the Newton medium;
St-V is the Saint-Venant medium;
7 is the stress;
Ey is the Young's modulus in the region of pure elastic deformations;
E, is the Young's modulus in the region of elasticoplastic deformations;
Og . is the elastie limit;
£ is the strain;
Ep is the strain corresponding to og;
7 is the coefficient of viscosity;
1 is the Heaviside unit function;
t is the time;
P—Th is the Poynting — Thomson medium;
o is the stress at t = 0;
EjeT = A; (6 — A)/n = B;
Dand F are coefficients;
o and B are dimensionless coefficients;

ty=n/E; azE/4toﬁ =djec+d=g;asty=h; B/tE=a fE/ty=c; Yag = k.
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